Ball Bearing Fault Diagnosis Using Supervised and Unsupervised Machine Learning Methods
نویسندگان
چکیده
This paper deals with the approach of using multiscale permutation entropy as a tool for feature selection for fault diagnosis in ball bearings. The coefficients obtained from the wavelet transformation of the vibration signals of the bearings are used for the calculation of statistical parameters. Based on the minimum multiscale permutation entropy criteria, the best scale is selected and statistical parameters such as crest factor, form factor, and permutation entropy are calculated. Finally, the faults are classified by considering the statistical parameters and permutation entropy as features in supervised and unsupervised machine learning methods, such as a support vector machine and self-organizing maps, respectively. Results revealed that the multiscale permutation entropy-based feature extraction techniques provide higher classification accuracy in comparison to the other methodologies that have been proposed in previous published works. The methodology proposed in this paper also gives good results for unsupervised learning methods, i.e. self-organizing maps. 1
منابع مشابه
Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملSemi-supervised weighted kernel clustering based on gravitational search for fault diagnosis.
Supervised learning method, like support vector machine (SVM), has been widely applied in diagnosing known faults, however this kind of method fails to work correctly when new or unknown fault occurs. Traditional unsupervised kernel clustering can be used for unknown fault diagnosis, but it could not make use of the historical classification information to improve diagnosis accuracy. In this pa...
متن کاملA hybrid feature selection scheme for unsupervised learning and its application in bearing fault diagnosis
With the development of the condition-based maintenance techniques and the consequent requirement for good machine learning methods, new challenges arise in unsupervised learning. In the real-world situations, due to the relevant features that could exhibit the real machine condition are often unknown as priori, condition monitoring systems based on unimportant features, e.g. noise, might suffe...
متن کاملUsing Deep Learning Based Approaches for Bearing Fault Diagnosis with AE Sensors
In the age of Internet of Things and Industrial 4.0, the prognostic and health management (PHM) systems are used to collect massive real-time data from mechanical equipment. Mechanical big data has the characteristics of large-volume, diversity and high-velocity. Effectively mining features from such data and accurately identifying the machinery health conditions with new advanced methods becom...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کامل